A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions

نویسندگان

  • M. K. Stoyanov
  • C. G. Webster
  • Miroslav K. Stoyanov
  • Clayton G. Webster
چکیده

In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the “best M -terms” based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have been successful in achieving this, with a traditional construction that relies on the solution to a Knapsack problem: only the most profitable hierarchical surpluses are added to the SG. However, this approach requires additional sharp estimates related to the size of the analytic region and the norm of the interpolation operator, i.e., the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively refines an estimate of the region and accounts for the effects of the Lebesgue constant. Our approach does not require any a priori knowledge of the analyticity or operator norm, is easily generalized to both affine and non-affine analytic functions, and can be applied to sparse grids build from one dimensional rules with arbitrary growth of the number of nodes. In several numerical examples, we utilize our dynamically adaptive SG to interpolate quantities of interest related to the solutions of parametrized elliptic and hyperbolic PDEs, and compare the performance of our quasi-optimal interpolant to several alternative SG schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

In this work we provide a convergence analysis for the quasi-optimal version of the Stochastic Sparse Grid Collocation method we had presented in our previous work “On the optimal polynomial approximation of Stochastic PDEs by Galerkin and Collocation methods” [6]. Here the construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and onl...

متن کامل

Adaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation

An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...

متن کامل

Local and Dimension Adaptive Sparse Grid Interpolation and Quadrature

In this paper we present a locally and dimension-adaptive sparse grid method for interpolation and integration of high-dimensional functions with discontinuities. The proposed algorithm combines the strengths of the generalised sparse grid algorithm and hierarchical surplus-guided local adaptivity. A high-degree basis is used to obtain a high-order method which, given sufficient smoothness, per...

متن کامل

A Sparse-grid Method for Multi-dimensional Backward Stochastic Differential Equations

A sparse-grid method for solving multi-dimensional backward stochastic differential equations (BSDEs) based on a multi-step time discretization scheme [31] is presented. In the multi-dimensional spatial domain, i.e. the Brownian space, the conditional mathematical expectations derived from the original equation are approximated using sparse-grid Gauss-Hermite quadrature rule and (adaptive) hier...

متن کامل

Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation

Let Xn = {x j }j=1 be a set of n points in the d-cube Id := [0, 1]d , and n = {φ j }j=1 a family of n functions on Id . We consider the approximate recovery of functions f on Id from the sampled values f (x1), . . . , f (xn), by the linear sampling algorithm Ln(Xn, n, f ) := ∑nj=1 f (x j )φ j . The error of sampling recovery is measured in the norm of the space Lq(I)-norm or the energy quasi-no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015